tvb.WongWangExcInh

experimental.network_dynamics.dynamics.tvb.WongWangExcInh(**kwargs)

Wong-Wang neural mass model with excitatory and inhibitory populations.

Two-population model representing local excitatory-inhibitory dynamics with NMDA-mediated recurrence and long-range coupling.

Notes

State equations:

\[ \begin{aligned} x_e &= w_p J_N S_e - J_i S_i + W_e I_o + c_{\text{total}} + I_{\text{ext}} \\ H_e &= \frac{a_e x_e - b_e}{1 - \exp(-d_e(a_e x_e - b_e))} \\ \frac{dS_e}{dt} &= -\frac{S_e}{\tau_e} + (1 - S_e) H_e \gamma_e \end{aligned} \]

\[ \begin{aligned} x_i &= J_N S_e - S_i + W_i I_o + \lambda c_{\text{total}} \\ H_i &= \frac{a_i x_i - b_i}{1 - \exp(-d_i(a_i x_i - b_i))} \\ \frac{dS_i}{dt} &= -\frac{S_i}{\tau_i} + H_i \gamma_i \end{aligned} \]

where: \(c_{\text{total}} = G J_N (c_{\text{delayed}} + c_{\text{instant}})\)

Attributes

Name Type Description
STATE_NAMES tuple of str State variables: ('S_e', 'S_i') (excitatory and inhibitory synaptic gating)
INITIAL_STATE tuple of float Default initial conditions: (0.001, 0.001)
AUXILIARY_NAMES tuple of str Auxiliary variables: ('H_e', 'H_i') (transfer functions)
COUPLING_INPUTS dict Coupling specification: {'instant': 1, 'delayed': 1}
DEFAULT_PARAMS Bunch Standard Wong-Wang parameters for excitatory/inhibitory populations

References

Wong & Wang (2006). A Recurrent Network Mechanism of Time Integration in Perceptual Decisions. Journal of Neuroscience, 26(4), 1314-1328.

Methods

Name Description
dynamics Compute Wong-Wang excitatory-inhibitory dynamics.

dynamics

experimental.network_dynamics.dynamics.tvb.WongWangExcInh.dynamics(
    t,
    state,
    params,
    coupling,
    external,
)

Compute Wong-Wang excitatory-inhibitory dynamics.

Parameters

Name Type Description Default
t float Current time (ms) required
state jnp.ndarray Current state with shape [2, n_nodes] containing (S_e, S_i) required
params Bunch Model parameters required
coupling Bunch Coupling inputs with attributes .instant and .delayed required
external Bunch External inputs (currently unused) required

Returns

Name Type Description
derivatives jnp.ndarray State derivatives with shape [2, n_nodes]
auxiliaries jnp.ndarray Auxiliary variables with shape [2, n_nodes] containing (H_e, H_i) transfer functions