AbstractNoise
experimental.network_dynamics.noise.AbstractNoise(
apply_to=None,
key=None,
**kwargs,
)Base class for stochastic processes in neural networks.
Handles the diffusion coefficient g(t, state, params) part of SDEs. The Brownian motion dW is handled by Diffrax integration.
Methods
| Name | Description |
|---|---|
| diffusion | Compute diffusion coefficient g(t, state, params). |
| generate_noise_samples | Generate standard Gaussian noise samples. |
| verify | Verify noise configuration is valid for given dynamics. |
diffusion
experimental.network_dynamics.noise.AbstractNoise.diffusion(t, state, params)Compute diffusion coefficient g(t, state, params).
Args: t: Current time state: Current state, shape [n_states, n_nodes] params: Noise parameters (Bunch object)
Returns: Diffusion coefficient, shape [n_noise_states, n_nodes] where n_noise_states = len(self._state_indices)
generate_noise_samples
experimental.network_dynamics.noise.AbstractNoise.generate_noise_samples(shape)Generate standard Gaussian noise samples.
Args: shape: Shape of noise samples to generate Typically (n_steps, n_noise_states, n_nodes)
Returns: Raw Gaussian noise samples ~ N(0,1) with the requested shape
verify
experimental.network_dynamics.noise.AbstractNoise.verify(dynamics, verbose=True)Verify noise configuration is valid for given dynamics.
Args: dynamics: Dynamics model to verify against verbose: Whether to print verification results
Returns: True if configuration is valid, False otherwise