Euler
experimental.network_dynamics.solvers.Euler()Euler method
For ODEs: Standard Euler when noise_sample=0 For SDEs: Euler-Maruyama when noise_sample provided
Methods
| Name | Description |
|---|---|
| step | Euler integration step: y_{n+1} = y_n + dt * f(t, y_n) + noise. |
step
experimental.network_dynamics.solvers.Euler.step(
dynamics_fn,
t,
state,
dt,
params,
noise_sample=0.0,
)Euler integration step: y_{n+1} = y_n + dt * f(t, y_n) + noise.
Args: dynamics_fn: Dynamics function (t, state, params) -> (derivatives, auxiliaries) t: Current time state: Current state [n_states, n_nodes] dt: Time step params: Parameters noise_sample: Pre-scaled noise increment
Returns: Tuple of (next_state, auxiliaries): - next_state: Next state [n_states, n_nodes] - auxiliaries: Auxiliary variables at current time [n_auxiliaries, n_nodes]