Euler

experimental.network_dynamics.solvers.Euler()

Euler method

For ODEs: Standard Euler when noise_sample=0 For SDEs: Euler-Maruyama when noise_sample provided

Methods

Name Description
step Euler integration step: y_{n+1} = y_n + dt * f(t, y_n) + noise.

step

experimental.network_dynamics.solvers.Euler.step(
    dynamics_fn,
    t,
    state,
    dt,
    params,
    noise_sample=0.0,
)

Euler integration step: y_{n+1} = y_n + dt * f(t, y_n) + noise.

Args: dynamics_fn: Dynamics function (t, state, params) -> (derivatives, auxiliaries) t: Current time state: Current state [n_states, n_nodes] dt: Time step params: Parameters noise_sample: Pre-scaled noise increment

Returns: Tuple of (next_state, auxiliaries): - next_state: Next state [n_states, n_nodes] - auxiliaries: Auxiliary variables at current time [n_auxiliaries, n_nodes]