tvb.MontbrioPazoRoxin
experimental.network_dynamics.dynamics.tvb.MontbrioPazoRoxin(**kwargs)Montbrio-Pazo-Roxin infinite theta neuron population model.
Two-dimensional mean field model describing the Ott-Antonsen reduction of infinite all-to-all coupled quadratic integrate-and-fire (QIF) neurons.
Notes
State variables:
- \(r\): Average firing rate of the population
- \(V\): Average membrane potential of the population
State equations:
\[ \begin{aligned} \frac{dr}{dt} &= \frac{1}{\tau} \left(\frac{\Delta}{\pi \tau} + 2Vr\right) \\ \frac{dV}{dt} &= \frac{1}{\tau} \left(V^2 - (\pi \tau r)^2 + \eta + J\tau r + I + c_r c_{\text{coup},r} + c_v c_{\text{coup},V}\right) \end{aligned} \]
where \(c_{\text{coup},r}\) and \(c_{\text{coup},V}\) are the combined instant and delayed coupling components, and \(c_r\), \(c_v\) are coupling weights.
The model has 2-dimensional coupling allowing independent coupling through firing rate (r) and membrane potential (V).
Attributes
| Name | Type | Description |
|---|---|---|
| STATE_NAMES | tuple of str | State variables: ('r', 'V') |
| INITIAL_STATE | tuple of float | Default initial conditions: (0.1, 0.0) |
| COUPLING_INPUTS | dict | Coupling specification: {'instant': 2, 'delayed': 2} |
| DEFAULT_PARAMS | Bunch | Standard parameters for QIF neuron population |
References
Montbrio, Pazo & Roxin (2015). Macroscopic description for networks of spiking neurons. Physical Review X, 5(2), 021028.
Methods
| Name | Description |
|---|---|
| dynamics | Compute Montbrio-Pazo-Roxin dynamics. |
dynamics
experimental.network_dynamics.dynamics.tvb.MontbrioPazoRoxin.dynamics(
t,
state,
params,
coupling,
external,
)Compute Montbrio-Pazo-Roxin dynamics.
Args: t: Current time state: State [2, n_nodes] with (r, V) params: Model parameters coupling: Coupling inputs - .instant[0]: local r-coupling - .instant[1]: local V-coupling - .delayed[0]: long-range r-coupling - .delayed[1]: long-range V-coupling
Returns: derivatives: [2, n_nodes] state derivatives