tvb.Kuramoto

experimental.network_dynamics.dynamics.tvb.Kuramoto(**kwargs)

Kuramoto phase oscillator model.

Single-state model representing the phase angle of an oscillator, widely used to study synchronization phenomena in networks of oscillatory units.

Notes

The model describes synchronization dynamics in networks of coupled oscillators through phase interactions.

State equation:

\[\frac{d\theta}{dt} = \omega + c_{\text{delayed}} + \sin(c_{\text{instant}} \cdot \theta)\]

where:

  • \(\theta\): Phase angle \([0, 2\pi]\)
  • \(\omega\): Natural frequency of oscillation
  • \(c_{\text{instant}}\): Local coupling (phase-dependent via sinusoidal transformation)
  • \(c_{\text{delayed}}\): Long-range delayed coupling (additive)

The local coupling uses a sinusoidal transformation capturing the phase-dependent interaction characteristic of Kuramoto-type coupling.

Attributes

Name Type Description
STATE_NAMES tuple of str State variable: ('theta',)
INITIAL_STATE tuple of float Default initial condition: (0.1,)
AUXILIARY_NAMES tuple of str No auxiliary variables: ()
COUPLING_INPUTS dict Coupling specification: {'instant': 1, 'delayed': 1}
DEFAULT_PARAMS Bunch Natural frequency omega=1.0 (rad/s or Hz depending on units)

References

Kuramoto (1984). Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, Berlin.

Methods

Name Description
dynamics Compute Kuramoto dynamics.

dynamics

experimental.network_dynamics.dynamics.tvb.Kuramoto.dynamics(
    t,
    state,
    params,
    coupling,
    external,
)

Compute Kuramoto dynamics.

Parameters

Name Type Description Default
t float Current time required
state jnp.ndarray Current state with shape [1, n_nodes] containing theta (phase angle) required
params Bunch Model parameters (omega: natural frequency) required
coupling Bunch Coupling inputs with attributes: - .instant[0]: local coupling (used in sin transform) - .delayed[0]: long-range coupling (additive) required
external Bunch External inputs (currently unused) required

Returns

Name Type Description
derivatives jnp.ndarray Phase velocity with shape [1, n_nodes]