AdditiveNoise
experimental.network_dynamics.noise.AdditiveNoise(
apply_to=None,
key=None,
**kwargs,
)Additive Gaussian noise: sigma * dW_t.
Simple additive white noise with constant variance. The diffusion coefficient is constant across time and states.
Parameters: sigma: Standard deviation of the noise (default: 0.1) Can be scalar (same for all states) or array (per-state)
Note: When converting from TVB’s HeunStochastic integrator: TVB uses ‘nsig’ parameter which is NOT the standard deviation. The conversion is: nsig_tvb = 0.5 * sigma^2 where sigma is the standard deviation used here.
Methods
| Name | Description |
|---|---|
| diffusion | Compute constant diffusion coefficient. |
diffusion
experimental.network_dynamics.noise.AdditiveNoise.diffusion(t, state, params)Compute constant diffusion coefficient.
Args: t: Current time (unused for additive noise) state: Current state, shape [n_states, n_nodes] params: Noise parameters with ‘sigma’
Returns: Raw diffusion coefficient(s) - broadcasting handled by network