Reference

Parameter

Base class wrapping a JAX array for extra capabilities.

parameter.Parameter A minimal JAX-native parameter with full arithmetic support.
parameter.NormalizedParameter Parameter that stores normalized values (ones) internally but presents
parameter.BoundedParameter Parameter with automatic bounds enforcement.
parameter.TransformedParameter Parameter with custom forward and reverse transformations.
parameter.SigmoidBoundedParameter Parameter with sigmoid-based bounds enforcement.
parameter.LogPositiveParameter Parameter constrained to be positive using log transformation.
parameter.LogNegativeParameter Parameter constrained to be negative using log transformation.
parameter.MaskedParameter Parameter that keeps masked entries fixed at their initial values.

Spaces

A space is a collection of states that a function can be applied over.

spaces.Space Composable parameter space built from multiple axes.
spaces.GridAxis Axis for systematic grid sampling over parameter bounds.
spaces.LogGridAxis Axis for systematic logarithmic grid sampling over parameter bounds.
spaces.UniformAxis Axis for uniform random sampling over parameter bounds.
spaces.DataAxis Axis for sampling from predefined data values.

Executors & Results

Executors are used to apply a function over a state space.

execution.SequentialExecution Sequential execution of models across parameter spaces with progress tracking.
execution.ParallelExecution Efficient parallel execution of models across parameter spaces using JAX.

Optimization

Everything needed to perform a gradient descent based optimization.

optim.OptaxOptimizer JAX-based parameter optimization using Optax optimizers with automatic differentiation.
optim.callbacks

Utilities

Your little helpers.

utils.caching
utils.utils
types.stateutils

Network Dynamics (Experimental)

JAX-based brain network modeling interface

Network Unified network class for all equation types (ODE/DDE/SDE/SDDE).
Bunch Dictionary with attribute access for parameters.
solve Solving system for network architecture.
prepare Prepare network dynamics model for simulation.

Dynamics

Neural mass and population models

AbstractDynamics Abstract base class for neural dynamics models with multi-coupling support.
Lorenz Lorenz chaotic dynamical system with multi-coupling support.
tvb.Linear Linear neural mass model with damping.
tvb.SupHopf Supercritical Hopf bifurcation oscillator.
tvb.Generic2dOscillator Generic 2D oscillator with configurable nullclines.
tvb.Kuramoto Kuramoto phase oscillator model.
tvb.JansenRit Jansen-Rit neural mass model with multi-coupling support.
tvb.ReducedWongWang Reduced Wong-Wang neural mass model with multi-coupling support.
tvb.WongWangExcInh Wong-Wang neural mass model with excitatory and inhibitory populations.
tvb.WilsonCowan Wilson-Cowan neural mass model with excitatory and inhibitory populations.
tvb.MontbrioPazoRoxin Montbrio-Pazo-Roxin infinite theta neuron population model.
tvb.CoombesByrne2D Coombes-Byrne 2D infinite theta neuron population model.
tvb.LarterBreakspear Larter-Breakspear neural mass model.
tvb.Epileptor Epileptor model for epileptic seizure dynamics.

Coupling

Inter-region coupling functions

AbstractCoupling Ultra-minimal interface for completely custom coupling implementations.
LinearCoupling Simple linear coupling function.
FastLinearCoupling Fast linear coupling using vectorized mode.
DelayedLinearCoupling Linear coupling with transmission delays.
DifferenceCoupling Diffusive coupling based on state differences.
DelayedDifferenceCoupling Diffusive coupling with transmission delays.
SigmoidalJansenRit Sigmoidal Jansen-Rit coupling function.
DelayedSigmoidalJansenRit Sigmoidal Jansen-Rit coupling with transmission delays.
SubspaceCoupling Coupling on regional subspace: aggregate nodes → couple regions → distribute.

Graphs

Connectivity and topology

AbstractGraph Abstract base class for network topology representations.
DenseGraph Dense graph representation.
DenseDelayGraph Dense graph with transmission delays.
SparseGraph Sparse graph representation using JAX BCOO format.
SparseDelayGraph Sparse graph with transmission delays.

Noise

Stochastic processes

AbstractNoise Base class for stochastic processes in neural networks.
AdditiveNoise Additive Gaussian noise: sigma * dW_t.
MultiplicativeNoise State-dependent multiplicative noise: sigma * (1 + alpha * |state|) * dW_t.

Solvers

Integration methods

AbstractSolver Base class for all solver types.
NativeSolver Base class for Network Dynamics’s native solvers (manual implementations).
DiffraxSolver Wrapper for Diffrax solvers with advanced features.
Euler Euler method
Heun Heun’s method (improved Euler).

Prepare

The unified interface for preparing experiments and networks for simulation

tvbo.prepare Convert TVBO SimulationExperiment to JAX-compatible model function and state.