tvb.Generic2dOscillator
experimental.network_dynamics.dynamics.tvb.Generic2dOscillator(**kwargs)Generic 2D oscillator with configurable nullclines.
A flexible two-variable dynamical system where V typically represents a fast variable (e.g., membrane potential) and W a slow recovery variable. The model can exhibit FitzHugh-Nagumo dynamics, bistability, or other behaviors depending on parameters.
Notes
State equations:
\[ \begin{aligned} \frac{dV}{dt} &= d \tau (-f V^3 + e V^2 + g V + \alpha W + \gamma I + \gamma c_{\text{delayed}} + c_{\text{instant}}) \\ \frac{dW}{dt} &= \frac{d}{\tau} (a + b V + c V^2 - \beta W) \end{aligned} \]
Parameter regimes:
- Excitable (FitzHugh-Nagumo-like): \(a=-2.0, b=-10.0, c=0.0, d=0.02, I=0.0\)
- Bistable: \(a=1.0, b=0.0, c=-5.0, d=0.02, I=0.0\)
- Morris-Lecar-like: \(a=0.5, b=0.6, c=-4.0, d=0.02, I=0.0\)
Attributes
| Name | Type | Description |
|---|---|---|
| STATE_NAMES | tuple of str | State variables: ('V', 'W') (fast and slow variables) |
| INITIAL_STATE | tuple of float | Default initial conditions: (0.0, 0.0) |
| COUPLING_INPUTS | dict | Coupling specification: {'instant': 1, 'delayed': 1} |
| DEFAULT_PARAMS | Bunch | Configurable nullcline parameters |
References
FitzHugh (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445.
Methods
| Name | Description |
|---|---|
| dynamics | Compute Generic2dOscillator dynamics. |
dynamics
experimental.network_dynamics.dynamics.tvb.Generic2dOscillator.dynamics(
t,
state,
params,
coupling,
external,
)Compute Generic2dOscillator dynamics.
Args: t: Current time state: State [2, n_nodes] with (V, W) params: Model parameters coupling: Coupling inputs (.instant, .delayed)
Returns: derivatives: [2, n_nodes] state derivatives