types
data.types
Classes
| Name | Description |
|---|---|
| AlgorithmResult | Result of an iterative algorithm (FIC, EIB, etc.). |
| BaseTimeSeries | Base time-series dataType. |
| ExperimentResult | Result from a complete experiment run. |
| ExplorationResult | Result of parameter exploration (grid search). |
| LegacySimulationResult | Legacy simulation result class. Use SimulationResult instead. |
| ObservationResult | Result from an observation pipeline with named outputs. |
| OptimizationResult | Result of gradient-based optimization. |
| SimulationResult | Wrapper for simulation result with attached observations. |
AlgorithmResult
data.types.AlgorithmResult(
name=None,
state=None,
history=None,
pre_tuning=None,
post_tuning=None,
post_tuning_observations=None,
n_iterations=None,
hyperparameters=None,
**kwargs,
)Result of an iterative algorithm (FIC, EIB, etc.).
Provides structured access to algorithm outputs with consistent naming regardless of which algorithm was run.
Attributes
name : str Algorithm name state : Bunch Final state with tuned parameters history : Bunch Per-iteration tracking: parameters, observations, metrics Access pattern: history.{param_name}[i], history.{obs_name}[i] pre_tuning : SimulationResult Simulation BEFORE algorithm (for comparison) post_tuning : SimulationResult Simulation AFTER algorithm with attached observations n_iterations : int Number of iterations run hyperparameters : Bunch Algorithm hyperparameters used (eta, window_size, etc.) convergence : Bunch Convergence metrics (final values, deltas, etc.)
BaseTimeSeries
data.types.BaseTimeSeries(
time,
data,
network=None,
title='TimeSeries',
sample_period=None,
labels_dimensions={},
units=None,
)Base time-series dataType.
Attributes
| Name | Description |
|---|---|
| sample_period_ms | :returns sample_period is ms |
| sample_rate | :returns samples per second [Hz] |
Methods
| Name | Description |
|---|---|
| convert_units | Convert units for a specific dimension and return a new TimeSeries. |
| copy | Return a deep copy of the current instance. |
| duplicate | Fast shallow-copy-based duplication with attribute update. |
| summary_info | Gather scientifically interesting summary information from an instance of this datatype. |
convert_units
data.types.BaseTimeSeries.convert_units(dimension, target_unit)Convert units for a specific dimension and return a new TimeSeries.
Parameters:
dimension : str Dimension to convert (‘time’, ‘state’, ‘region’, ‘mode’) target_unit : str Target unit to convert to
Returns:
TimeSeries New TimeSeries with converted values
copy
data.types.BaseTimeSeries.copy()Return a deep copy of the current instance.
duplicate
data.types.BaseTimeSeries.duplicate(**kwargs)Fast shallow-copy-based duplication with attribute update.
summary_info
data.types.BaseTimeSeries.summary_info()Gather scientifically interesting summary information from an instance of this datatype.
ExperimentResult
data.types.ExperimentResult(results=None, experiment_name=None, **kwargs)Result from a complete experiment run.
Wraps the raw results from code execution and provides: - Tree-structured view showing outputs with their contents - Schema-aligned access (results.integration.main, results.algorithms.fic, etc.)
ExplorationResult
data.types.ExplorationResult(
name=None,
grid=None,
results=None,
axes=None,
observable=None,
**kwargs,
)Result of parameter exploration (grid search).
A thin wrapper around tvboptim exploration outputs that provides: - Access to raw results (flat or grid-shaped) - Axis information for parameter values - Utility methods for finding optimal points and slicing
Designed to work with tvboptim’s Space and ParallelResult directly, while also supporting other exploration backends.
Attributes
name : str Exploration name grid : Space Parameter grid specification (tvboptim Space object) results : jnp.ndarray Observable values at each grid point (flat or grid-shaped) axes : list List of axis info (Bunch with name, lo, hi, n, values) observable : str Name of observable computed optimal : Bunch Best point found (parameters, value, index) shape : tuple Grid shape derived from axes
Methods
| Name | Description |
|---|---|
| as_grid | Reshape flat results to grid shape. |
| slice | Get a slice of results with some parameters fixed. |
as_grid
data.types.ExplorationResult.as_grid()Reshape flat results to grid shape.
Returns
jnp.ndarray Results reshaped to (n_axis1, n_axis2, …) matching axes order
slice
data.types.ExplorationResult.slice(**fixed_params)Get a slice of results with some parameters fixed.
Example: result.slice(G=0.5) returns 1D slice at G=0.5
LegacySimulationResult
data.types.LegacySimulationResult()Legacy simulation result class. Use SimulationResult instead.
ObservationResult
data.types.ObservationResult(**kwargs)Result from an observation pipeline with named outputs.
Exposes pipeline outputs as attributes (e.g., result.psd, result.frequencies) while maintaining NativeSolution-like interface (.data, .time, .dt).
Attributes
| Name | Description |
|---|---|
| data | Primary data output (alias for ys). |
| time | Time array (alias for ts). |
OptimizationResult
data.types.OptimizationResult(
name=None,
state=None,
history=None,
simulation=None,
n_steps=None,
hyperparameters=None,
**kwargs,
)Result of gradient-based optimization.
Provides structured access to optimization outputs including loss trajectory, parameter evolution, and final simulation.
Attributes
name : str Optimization/loss function name state : Bunch Final optimized state (alias: fitted_params) history : Bunch Per-step tracking: loss values, states, gradients Access: history.loss[i], history.state[i] simulation : SimulationResult Post-optimization simulation with attached observations loss_trajectory : jnp.ndarray Loss values at each step (convenience accessor) n_steps : int Number of optimization steps final_loss : float Final loss value hyperparameters : Bunch Optimizer settings (learning_rate, algorithm, etc.)
SimulationResult
data.types.SimulationResult(result=None, observations=None, **kwargs)Wrapper for simulation result with attached observations.
Mirrors the YAML structure by attaching observations to the simulation they derive from. This provides consistent access regardless of mode.
Attributes
data : jnp.ndarray Raw simulation data (time, state, nodes) time : jnp.ndarray Time vector observations : Bunch Computed observations from this simulation (bold, fc, etc.)